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Abstract. The self-organization of formal neurons due to external inputs is investigated in a
two-layered model of a neural network. The synaptic connections are modified by a Hebbian
rule. A steady state of the connections is attained after repeated inputs of a set of the patterns,
and self-organization is accomplished. Equations describing the response of the output neurons
in the steady state are transformed into the form of mean field equations for an Ising spin system.
The mean field equations contain eachself-fieldat a lattice site which is proportional to the spin
average at the same site. A response property of the neural network is determined by a spin
structure at a fixed low temperature. We show that a Hamiltonian of the Ising spin system and
self-consistencyconditions give the mean field equations. Based on the Hamiltonian, we propose
a self-consistentMonte Carlo simulation as a practical method of finding a spin structure, i.e. a
response property of the neural network. The self-fields are self-consistently determined in the
Monte Carlo procedure. The result of the self-consistent Monte Carlo simulation qualitatively
agrees with a numerical solution of the mean field equations in a simple case of self-organization.

1. Introduction

Orientation selectivity was first discovered by Hubel and Wiesel in microelectrode
experiments on the striate cortex of cats and monkeys [1]. The cells in the orientation
columns express a preference for certain orientations of bars and edges in their visual fields.
Recent experiments using the optical technique revealed the detailed distribution of the
orientation preference in visual cortices of monkeys [2] and cats [3].

The self-organization of the orientation preference map has been theoretically
investigated by many authors [4–10]. While some of characteristic features of orientation
preference map have been presented by recent works [6–8], nonlinear effects of outputs
of formal neurons have not been fully considered in these works and influence of external
inputs on the formation of the orientational map has not been explicitly treated. The study
of self-organization taking into account the nonlinearity of neurons and influence of external
inputs was started by von der Malsburg [4], and then developed by Takeuchi and Amari [5]
using a continuous nerve field.

¶ E-mail address: miyake@camp.apph.tohoku.ac.jp
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In this paper we study self-organization of orientation selectivity due to external-inputs
in a formal neuron model with a sigmoidal output function. A steady state of the model is
attained by Hebbian learning [11] under the external inputs, and the outputs of the formal
neurons are described by a set of nonlinear equations. The purposes of our study are,
(1) to show that the nonlinear equations of the steady state are transformed into mean
field equations which arise in the statistical mechanics of magnetism, (2) to show that
a Hamiltonian of an Ising spin system and self-consistency conditions give the mean field
equations in mean field approximation, and (3) to introduce a kind of Monte Carlo simulation
based on the Hamiltonian in order to find the self-organization of the formal neurons.

In section 2 a two-layered model of a neural network with an inhibitory neuron pool and
its related basic equations are described. In section 3 a steady state of the neural network
is described by a set of nonlinear equations. In section 4 the nonlinear equations derived
in section 3 are converted to a set of mean field equations which arise in the statistical
mechanics of magnetism. In section 5 a Hamiltonian is defined for an Ising spin system
which is characterized by self-fields. In section 6 a method ofself-consistentMonte Carlo
simulation is proposed. In a simple case of orientation selectivity it is shown that the result
of self-consistent Monte Carlo simulation agrees qualitatively with a numerical solution of
the mean field equations. Section 7 is devoted to conclusions.

Figure 1. Two-layered model of neural network.

2. Model and basic equations

We consider a two-layered model of a neural network [5] which consists of an input layer
and an output layer of formal neurons as shown in figure 1. A neuron in the output layer
receives an input patternX = {Xk} from the input layer, and input signals from the output
layer and an inhibitory neuron pool. An output signal from an output neuron is denoted by
zi . Here the input and the output layer are two-dimensional lattices of neurons, andk and
i denote two-dimensional vectors indicating the locations of neurons within each layer. An
excitatory connectionsik between the output neuroni and the input neuronk is modified by
unsupervised learning due to the input patterns. The connectionwij between two neurons
i and j within the output layer is a function of the distance betweeni and j . It is of a
lateral-inhibition type, that is, it is excitatory for a pair of neurons in the neighbourhood and
inhibitory for a pair of neurons far from each other. This type of interaction is sometimes
called a ‘Mexican-hat’ interaction [12]. We use the Mexican-hat interaction of the form,

wij = (E + I ) exp

(
−|i − j |2

r2
E

)
− I exp

(
−|i − j |2

r2
I

)
(1)
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where E denotes the excitatory strength,I the inhibitory strength,rE the range of the
excitatory interaction, andrI the range of the inhibitory interaction. We also introduce
an inhibitory connectionsi between the output neuroni and an inhibitory neuron pool [5]
which provides a constant input signalX0 = 1. An output from the output neuroni is
expressed by

zi = f (ui − uth) (2)

whereui denotes the average membrane potential of the output neuroni, anduth a threshold
for activity. Here the output functionf is a monotonically increasing nonlinear function
with a saturation property, which is approximated in this paper by a sigmoid function

f (x) = 1

1 + exp(−2βx)
(3)

whereβ is a characteristic constant that determines the gradient of the output function,β/2,
at x = 0.

The average membrane potential, referred to as the membrane potential hereafter for
simplicity, is assumed to satisfy the time-dependent equation [5]

τ ′ dui

dt
= −ui +

∑
k

sikXk +
∑

j

wij zj − siX0 (4)

whereτ ′ denotes a time constant of the membrane potential of the order of milliseconds,
and the resting state is taken asuj = 0. In the right-hand side of (4) the first term represents
the decay effect which ensures the saturation of the membrane potential, the second term
the external input to the output neuroni through the synaptic connections, the third term
the contribution from the output neuronj through the ‘Mexican-hat’ interaction, and the
fourth term the inhibitory contribution from the inhibitory neuron pool.

It is assumed that the synaptic connectionssik and si are modified according to a so-
called ‘Hebbian rule’, that is, it is increased by the simultaneous activities of both the
presynaptic and postsynaptic neurons. Then the learning process is described by the time
development of the synaptic connections,

τ
dsik

dt
= −sik + cziXk (5a)

τ
dsi

dt
= −si + c′ziX0 (5b)

where τ denotes a time constant of the learning much greater thanτ ′ of the membrane
potential, andc and c′ are constants which control the efficiency of learning. The time
constants in (5a) and (5b) are chosen to be the same for the sake of simplicity.

When an input pattern is presented to an output neuroni, the membrane potentialui

immediately reaches to a steady value. Hereafter we simply replace the potentialui by the
steady value

ui =
∑

k

sikXk +
∑

j

wij zj − siX0 (6)

for an input patternX.
Suppose that a patternXµ labelled byµ, (µ = 1, 2, . . . , P ), is chosen at random

from an input ensemble,{X}, which contains the patternXµ with probability pµ, and is
presented to the output layer as an input pattern. The learning time constant is assumed to
be much greater than the time duration in which each kind of labelled pattern is presented
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to the output layer. During the presentation of the input patterns the synaptic connections
are little modified, and the learning equations are approximated by [5]

τ
dsik

dt
= −sik + c〈ziXk〉 (7a)

τ
dsi

dt
= −si + c′〈ziX0〉 (7b)

where the brackets in the right-hand side of (7a) and (7b) denote the ensemble average

〈ziXk〉 =
P∑

µ=1

pµz
µ

i X
µ

k (8a)

〈ziX0〉 =
P∑

µ=1

pµz
µ

i . (8b)

Herez
µ

i is the response of the output neuron to the input patternXµ. The approximation
used in the derivation of (7a) and (7b) is well known in physics as ‘adiabatic approximation’.

3. Steady state

If we continue to apply the input ensemble to the output layer for a time duration much
greater than the learning time constantτ , steady values of synaptic connections will be
attained,

Sik = c

P∑
µ=1

pµZ
µ

i X
µ

k (9)

Si = c′X0

P∑
µ=1

pµZ
µ

i (10)

where the capital letters mean the quantities in the steady state. After the steady state has
been attained, the learning process in the neural network stops. The response of the neural
network is completely described by the set of steady outputs{Zµ

i }. Using (2), (6), (9) and
(10) the steady outputZµ

i is expressed as

Z
µ

i = f

[ P∑
ν=1

(cvµν − c′v0)pνZ
ν
i +

∑
j

wijZ
µ

j − uth

]
(11)

wherevµν denotes the spatial correlation of the input patternsXµ andXν and is defined
by

vµν =
∑

k

X
µ

k Xν
k (12)

andv0 denotes the self-correlation of the input from the inhibitory neuron pool and is defined
by

v0 = X0X0 . (13)

The spatial self-correlationvµµ is positive and large compared tovµν (ν 6= µ) as shown
later in section 6. We choose the learning constantsc andc′ so that(cvµµ−c′v0) is positive.

From (11) it is easily seen that the term proportional toc′v0 would play the role of
inhibition against the input patternµ, if the neuron made a response to the input patternν.
Therefore, the inhibitory neuron pool prevents a neuron from making redundant responses
to input patterns which are weakly correlated with the optimum pattern.
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4. Mean field equations and an Ising spin system

In this section we assume that the probabilities in the input ensemble are uniform, i.e.

pµ = 1

P
for all µ. (14)

Using the hyperbolic tangent function, the output function (3) is expressed by

f (x) = 1
2(1 + tanhβx). (15)

Here we introduce a set of new variablesmiµ by

Z
µ

i = 1
2(1 + miµ). (16)

Then equation (11) is rewritten in terms ofmiµ as,

miµ = tanhβ

[
1

2

∑
j

wij (1 + mjµ) + 1

2P

P∑
ν

(cvµν − c′v0)(1 + miν) − uth

]
. (17)

Equation (17) has the form of a mean field equation for an Ising spin system in statistical
physics of magnetism [13]. Here the variablemiµ is interpreted as the mean field average
of an Ising spin located at a three-dimensional lattice site,iµ, wherei stands for a two-
dimensional lattice site in thexy plane andµ a one-dimensional lattice site on thez axis.
It is to be noted that thez coordinate of each lattice site represents the index number of the
input pattern.

Equation (17) is rewritten in a simple form

miµ = tanhβHiµ (18)

whereHiµ is a local effective field defined by

Hiµ =
∑
j 6=i

J
(xy)

ij mjµ +
∑
ν 6=µ

J (z)
µν miν + hiµ + hself

iµ + hself
iµ miµ. (19)

The set of equations (18) and (19) constitute a set of the mean field equations at a fixed
temperatureT = 1/β in the theory of magnetism. The constants in (19) are given by

J
(xy)

ij = 1
2wij (20)

J (z)
µν = 1

2P
(cvµν − c′v0

µν) (21)

hiµ =
∑
j 6=i

J
(xy)

ij +
∑
ν 6=µ

J (z)
µν − uth (22)

and

hself
iµ = J

(xy)

ii + J (z)
µµ (23)

whereJ
(xy)

ij is interpreted as an exchange interaction between the two Ising spins atiµ and
jµ on the plane ofz = µ, andJ (z)

µν as that between the two Ising spins atiµ and iν on
an axis parallel to thez-axis. It is noted that the symmetry in (21) with respect toµ and
ν is ensured by the assumption of the uniform probability in the input ensemble. In (19),
hiµ andhself

iµ denote local effective fields acting upon the Ising spin atiµ. The last term in
the right-hand side of (19),hself

iµ miµ, is a kind of mean field at the lattice siteiµ which is
proportional to the spin average at the same siteiµ, and is referred to as theself-field in
this paper. The similar term appears in a dynamical rule for a Hopfield model and is called
a self-coupling term [14]. Note that the coefficient of the self-field,hself

iµ , is positive definite,
because of the large value of the self-correlationvµµ. The notion of the self-field represents
one of the biological features in our formulation of self-organization. The self-fields will
play an important role in the formation of orientation selectivity.
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5. Hamiltonian

We consider a Hamiltonian in the three-dimensionaliµ lattice space,

H = − 1
2

∑
i

∑
µ6=ν

∑
ν

J (z)
µν σiµσiν − 1

2

∑
i 6=j

∑
j

∑
µ

J
(xy)

ij σiµσjµ−
∑

i

∑
µ

(hiµ + hself
iµ + h

〈σ 〉
iµ )σiµ

(24)

whereσiµ denotes a spin operator which takes the value 1 or−1, andh
〈σ 〉
iµ denotes a local

effective field acting upon the Ising spin atiµ and undetermined constant. The thermal
average of each Ising spin is given by

〈σiµ〉 = Tr{σiµ exp(−βH)}
Tr{exp(−βH)} (25)

where Tr means taking the trace over all the Ising spin variablesσiµ.
In order to determineh〈σ 〉

iµ , we add constraints

h
〈σ 〉
iµ = hself

iµ 〈σiµ〉. (26)

The equations (25) and (26) constitute a set of simultaneous equations which determine
h

〈σ 〉
iµ .

In physics a set of mean field equations is derived from the Hamiltonian of interacting
Ising spins, assuming that in thermal equilibrium the influence of other spins on a particular
spin is approximately represented by a mean field which is a sum of terms proportional to
the thermal averages of surrounding spins. The mean field derived from the Hamiltonian
(24) is given by a local effective field,

H
〈σ 〉
iµ =

∑
j 6=i

J
(xy)

ij miµ +
∑
ν 6=µ

J (z)
µν miν + hiµ + hself

iµ + h
〈σ 〉
iµ (27)

where

miµ = tanhβH
〈σ 〉
iµ . (28)

The average of each Ising spin in mean field approximation is given by (28), and the
constraints (26) are replaced by

h
〈σ 〉
iµ = hself

iµ miµ. (29)

Equations (27), (28) and (29) give the mean field equations (18) and (19).
The Hamiltonian (24) subject to the constraints (26) is referred to as apseudo-

Hamiltonian in this paper. The local fields defined by (26) are referred to as self-fields
in the pseudo-Hamiltonian. The constraints (26) are calledself-consistency conditionsfor
the pseudo-Hamiltonian.

The physical system of the output neurons and the external environments which are
represented by the correlations between input patterns are incorporated into the single
pseudo-Hamiltonian in three-dimensional lattice space spanned by the two-dimensional
output layer and the one-dimensional fictitious axis of input patterns. The self-consistency
condition (26) determines the self-fields only at the fixed temperatureT as constant
external fields in the pseudo-Hamiltonian. Biologically, therefore, the pseudo-Hamiltonian
is meaningful only at the fixed temperature for the self-consistency. It should be noted that
a pseudo-Hamiltonian has its own distribution of upward and downward self-fields. In other
words, different distributions of self-fields correspond with different pseudo-Hamiltonians.
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6. Mean field equations and self-consistent Monte Carlo simulation

There are two alternative methods of obtaining a solution of the mean field equations. A
direct method that requires a numerical calculation based on iteration of the mean field
equations (17) themselves and an indirect method that uses the Hamiltonian to calculate the
thermal averages via (25).

We usually use an iterative method to solve the mean field equations (17). A set of
local magnetizations,{miµ(0)}, is assumed first. This naturally determines a set of self-fields
{hself

iµ miµ(0)}, referred to as an initial distribution of self-fields. Substituting the initial local
magnetizations into the right-hand side of (17), we get a new set of magnetization{miµ(1)}
as the results of the first iteration. Then we continue by substituting the new magnetizations,
miµ(1), into the right-hand side of (17), and so forth. If the iterative procedure converges
to give a set of{miµ} within a certain accuracy, a solution of the mean field equations is
obtained. It is to be noted that the iteration sometimes fails to converge, depending on
the initial conditions above mentioned. We guess that this is due partly to an inadequate
distribution of initial self-fields, partly to inhibitory (antiferromagnetic) effects in the lateral
interactions,wij , partly to an inappropriate choice of parameter values, and/or partly to
nonlinear effects. The important things are as follows.

(1) There are many solutions in the mean field equations (17). This is a situation quite
different from mean field equations in magnetism where usually only one or a few solutions
exist.

(2) The solutions depend strongly on the initial distribution of self-fields,{hself
iµ miµ(0)},

because of the large coefficient,hself
iµ , originally coming from the large self-correlations of

the input patterns.
We usually started from a random distribution of magnetizations, and sometimes

obtained a rather weakly ordered distribution of up-spin clusters dispersed in the sea of
down-spin magnetization, and sometimes non-convergent results. We wonder what sorts of
solutions might exist for the mean field equations besides those obtained in the manner just
described.

As an alternative, we use the Hamiltonian to search for other types of solutions. The
partition function of Ising spins in three dimensions has not been calculated analytically.
Therefore, analytical calculation of the right-hand side of (25) is almost impossible. The
thermal averages{〈σiµ〉} can be evaluated numerically by a Monte Carlo simulation [15–17].
In performing the Monte Carlo simulation, we start with an initial distribution of self-fields
represented by local effective fields,hself

iµ , and with an initial configuration of Ising spins
σiµ = 1 or −1. Then we take account of the self-consistency conditions (26) as follows.
The local effective fields,h〈σ 〉

iµ , in the Hamiltonian (24) are kept constant throughout a certain
period of Monte Carlo steps (MCS). Spin averages are calculated over the period, and the
averages multiplied byhself

iµ are used as new local fieldsh〈σ 〉
iµ in the following period of MCS.

The procedure is continued until the local fields converge within a certain accuracy. Then
the self-consistency conditions (26) are satisfied and the converged local fields give the self-
fields in thermal equilibrium. Hereafter this simulation is referred to as ‘aself-consistent
Monte Carlo simulation’.

It is to be noted that, contrary to the usual situation in physics, the pseudo-Hamiltonian
is the result of an approximation to the self-organization in our neural network model.
Therefore, it is necessary to ensure that the result of the self-consistent Monte Carlo
simulation agrees at least qualitatively with the numerical solution of (17). In the following
we compare results obtained by each method for the simplest case of self-organization of
the orientation selectivity. We adopt triangular lattices for the input and the output layer of
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Figure 2. Input patterns and output patterns fromµ = 1–6. (a) Input patternsXµ. (b) Output
patternsZµ obtained from mean field equations withT = 0.5. (c) Output patternsZµ of self-
consistent Monte Carlo simulations withT = 0.3. Parameters are chosen as follows.E = 0.5,
rE = 2, I = 0.3, rI = 15, c/P = 0.098 andh = 1.0. The size of the input layer is given by
Lx ×Ly whereLx = 17 andLy = 17, and that of the output layer byNx ×Ny whereNx = 20
andNy = 22. Averages of spins are taken over 1000 MCS, and the last average is taken from
the 5001st MCS to the 6000th MCS.
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Figure 3. Correlationv1ν between input patterns 1 andν. The self-correlationv11 is very large
compared to the other correlations and results in strong self-fields.

the neural network, and we use a simplified form of the ‘Mexican-hat’ interaction

wij =


E for |i − j | 6 rE

−I for rE < |i − j | 6 rI

0 otherwise

(30)

as an approximation for (1). Fifteen patterns of a bar shape with various orientations are
chosen as input patterns,Xµ (µ = 1, 2, . . . , 15). A few of them are shown in figure 2(a)
for µ = 1–6. Generally the spatial correlationvµν depends on the intersection angleθµν

between the input patternsµ andν, and is roughly given by

vµν =


2ab for µ = ν

b2

sinθµν

for µ 6= ν
(31)

wherea and b denote the radius and the width of the input patternX of a bar shape as
shown in figure 2(a). As an example of numerical calculation based on (12), the correlation
for µ = 1 and ν is shown in figure 3 as a function ofν. We neglect the effect of the
inhibitory neuron pool by setting the inhibitory learning constantc′ = 0 for the sake of
simplicity.

The mean field equations (17) are solved numerically and a few of the output patterns
Z

µ

i converted frommiµ are shown in figure 2(b) for µ = 1–6, where the output neurons
which fire for the input patternµ are denoted by full circles, showing the response of the
neural network after the learning has been accomplished.

On the other hand, Monte Carlo simulation for the Ising spin system in the three-
dimensionaliµ lattice space has been carried out starting from an initial distribution of
self-fields similar to the above numerical solution. The self-fields and other quantities are
averaged over 1000 MCS. Upon confirming that the averages of spins remain almost constant
for two consecutive periods of 1000 MCS, the simulation is stopped. The output patterns
are easily derived from the averages of local spins by the conversion (16) and a few of them
are shown in figure 2(c) for µ = 1–6. We can see that these output patterns acquired by
the two methods for the same input patterns are qualitatively in agreement. This suggests
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that the Monte Carlo simulation for calculating the self-fields self-consistently gives a good
approximation to the solution of the mean field equations.

It is to be noted that in the self-consistent Monte Carlo simulation local effective fields
calculated in an averaging period of MCS change gradually from those calculated in the
previous averaging period of MCS, while in an iterative solution of the mean field equations,
the self-fields sometimes change drastically from those in the previous step. This gives
a kind of stability to the self-consistent Monte-Carlo simulation. We consider the self-
consistent Monte Carlo simulation to be a promising method of obtaining various results of
self-organization by starting from various random and other appropriate initial conditions. A
more detailed discussion concerning the comparison of solutions of the mean field equations
and results of the self-consistent Monte Carlo calculation will be reported in another paper.

7. Conclusions

The detailed analysis of the steady-state equations describing the self-organization in the
two-layered model of formal neurons leads to the following conclusions.

(1) The response of the output neurons for each input pattern in the steady state is
described by a set of the mean field equations which arise in the statistical mechanics of
magnetism.

(2) The mean field equations are derived in mean field approximation from the
Hamiltonian of the Ising spin system and the self-consistency conditions.

(3) The response of the output neurons is represented by a thermal state at a fixed
temperature of the Ising spin system which is described by the Hamiltonian in three-
dimensional lattice space.

(4) The self-consistent Monte Carlo simulation is a new method of simulation and gives
a satisfactory result as an approximation to the mean field equations.

In the Hamiltonian formalism, the distribution of upward self-field within the plain of
z = µ represents the distribution of the active neurons responding to the input pattern
µ. The formalism provides us with an overall perspective point of view by combining
the neural network and the external environments represented by the correlations between
input patterns. We expect that the self-consistent Monte Carlo simulation is a promising
method of finding self-organization by formal neurons, because it provides an effective way
of determining a spin structure at a fixed temperature, i.e. a response property of the neural
network.
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